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CONES OF MATRICES AND SET-FUNCTIONS AND 0-1 OPTIMIZATION*

L. LOVASZt AND A. SCHRIJVER}

Abstract. It has been recognized recently that to represent a polyhedron as the projection of a
higher-dimensional, but simpler, polyhedron, is a powerful tool in polyhedral combinatorics. A general
method is developed to construct higher-dimensional polyhedra (or, in some cases, convex sets) whose
projection approximates the convex hull of 0-1 valued solutions of a system of linear inequalities. An
important feature of these approximations is that one can optimize any linear objective function over them
in polynomial time.

In the special case of the vertex packing polytope, a sequence of systems of inequalities is obtained
such that the first system already includes clique, odd hole, odd antihole, wheel, and orthogonality constraints.
In particular, for perfect (and many other) graphs, this first system gives the vertex packing polytope. For
various classes of graphs, including t-perfect graphs, it follows that the stable set polytope is the projection
of a polytope with a polynomial number of facets.

An extension of the method is also discussed which establishes a connection with certain submodular
functions and the Mdbius function of a lattice.
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0. Introduction. One of the most important methods in combinatorial optimization
is that which represents each feasible solution of the problem by a 0-1 vector (usually
the incidence vector of the appropriate set), and then describes the convex hull K
of the solutions by a system of linear inequalities. In the nicest cases (e.g., in the
case of the bipartite matching problem) we obtain a system that has polynomial size
(measured in the natural “‘size” n of the problem). In such a case, we can compute
the maximum of any linear objective function in polynomial time by solving a linear
program. In other cases, however, the convex hull of feasible solutions has exponentially
many facets and so can only be described by a linear program of exponential size. For
many combinatorial optimization problems (including those solvable in polynomial
time), this exponentially large set of linear inequalities is still “nice” in one sense or
another. We mention two possible notions of “‘niceness”:

—Given an inequality in the system, there is a polynomial size certificate of the
fact that it is valid for K. If this is the case, the problem of determining whether a
given vector is in K is in the complexity class co-NP.

—There is a polynomial time separation algorithm for the system; that is, given
a vector, we can check in polynomial time whether it satisfies the system, and if not,
we can find an inequality in the system that is violated. It follows, then, from general
results on the ellipsoid method (see Grétschel, Lovasz, and Schrijver [14]) that every
linear objective function can be optimized over K in polynomial time.

Many importarit theorems in combinatorial optimization provide such ‘‘nice”
descriptions of polyhedra. Important examples of polyhedra with “nice” descriptions
are matching polyhedra, matroid polyhedra, stable set polyhedra for perfect graphs,
etc. On the other hand, stable set polyhedra, in general, or travelling salesman poly-
hedra, are not known to have “nice” descriptions (and probably do not have any).
Typically, to find such a “nice” description and to prove its correctness, one needs ad
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hoc methods depending on the combinatorial structure. However, one can mention
two general ideas that can help in obtaining such linear descriptions:

—Gomory-Chvdtal cuts. Let P be a polytope with integral vertices. Assume that
we have already found a system of linear inequalities valid for P whose integral
solutions are precisely the integral vectors in P. The solution set of this system is a
polytope K containing P which will in general be larger than P. We can generate
further linear inequalities valid for P (but not necessarily for K) as follows. Given a
linear inequality

Saxisa

valid for K, where the a; are integers, the inequality

Yax=|al

is still valid for P but may eliminate some part of K. Gomory [11] used a special
version of this construction in his integer programming algorithm. If we take all
inequalities obtainable in this way, they define a polytope K’ with P < K’< K. Repeat-
ing this with K’ in place of K we obtain K", etc. Chvatal [8] proved that in a finite
number of steps, we obtain the polytope P itself.

Unfortunately, the number of steps needed may be very large; it depends not only
on the dimension but also on the coefficients of the system with which we start. Another
problem with this procedure is that there is no efficient way known to implement it
algorithmically. In particular, even if we know how to optimize a linear objective
function over K in polynomial time (say, K is given by an explicit, polynomial size
linear program), and K'= P, we know of no general method to optimize a linear
objective function over P in polynomial time.

— Projection representation (new variables). This method has received much atten-
tion lately. The idea is that a projection of a polytope may have more facets than the
polytope itself. This remark suggests that even if P has exponentially many facets, we
may be able to represent it as the projection of a polytope Q in higher (but still
polynomial) dimension, having only a polynomial number of facets. Among others,
Barahona [4]; Liu [16]; Ball, Liu, and Pulleyblank [3]; Maculan [19]; Balas and
Pulleyblank [1], [2]; Barahona and Mahjoub [5]; and Cameron and Edmonds [6] have
provided nontrivial examples of such a representation. It is easy to see that such a
representation can be used to optimize linear objective functions over P in polynomial
time. In the negative direction, Yannakakis [26] proved that the travelling salesman
polytope and the matching polytope of complete graphs cannot be represented this
way, assuming that the representation is “canonical.” (Let P<R" and P'<R™ be two
polytopes. We say that a projection representation = : P’ P is canonical if the group
I" of isometries of R” preserving P has an action as isometries of R™ preserving P’ so
that the projection commutes with these actions. Such a representation is obtained,
e.g., when new variables are introduced in a “canonical” way—in the case of the
travelling salesman polytope, this could mean variables assigned to edges or certain
other subgraphs, and constraints on these new variables are derived from local proper-
ties. If we have to start with a reference orientation, or with specifying a root, then
the representation obtained will not be canonical.) No negative results seem to be
known without this symmetry assumption.

One way to view our results is to provide a general procedure to create such
liftings. The idea is to extend the method of Grdtschel, Lovasz, and Schrijver [12] for
finding maximum stable sets in perfect graphs to general 0-1 programs. We represent
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a feasible subset not by its incidence vector v but by the matrix vo”. This squares the
number of variables, but in return we obtain two new powerful ways to write down
linear constraints. Projecting back to the “usual” space, we obtain a procedure some-
what similar to the Gomory-Chvdtal procedure: it “cuts down” a convex set K to a
new convex set K’ so that all 0-1 solutions are preserved. In contrast to the Gomory-
Chvital cuts, however, any subroutine to optimize a linear objective function over K
can be used to optimize a linear objective function over K'. Moreover, repeating the
procedure at most n times, we obtain the convex hull P of 0-1 vectors in K.

Our method is closely related to recent work of Sherali and Adams [22]. They
introduce new variables for products of the original ones and characterize the convex
hull, in this high-dimensional space, of vectors associated with 0-1 solutions of the
original problem. In this way they obtain a sequence of relaxations of the 0-1 optim-
ization problem, the first of which is essentially the N operator introduced in § 1 below.
Further, members of the two sequences of relaxations are different but closely related,;
some of our results in § 3, in particular, formula (6) and Theorem 3.3, follow directly
from their work.

This method is also related to (but different from) the recent work of Pemantle,
Propp, and Ullman [20] on the tensor powers of linear programs.

In § 1, we describe the method in general, and prove its basic properties. Section
2 contains applications to the vertex packing problem, one of the best studied com-
binatorial optimization problems. It will turn out that our method gives in one step
almost all of the known classes of facets of the vertex packing polytope. It will follow,
in particular, that if a graph has the property that its stable set polytope is described
by the clique, odd hole, and odd antihole constraints, then its maximum stable set can
be found in polynomial time.

In § 3 we put these results in a wider context by raising the dimension even higher.
We introduce exponentially many new variables; in this high-dimensional space, rather
simple and elegant polyhedral results can be obtained. The main part of the work is
to “push down” the inequalities to a low dimension and to carry out the algorithms
using only a polynomial number of variables and constraints. It will turn out that the
methods in § 1, as well as other constructions like TH (G), as described in Grotschel,
Loviasz, and Schrijver [13], [14], follow in a natural way.

1. Matrix cuts. In this section we describe a general construction for “lifting” a
0-1 programming problem in n variables to n” variables, and then projecting it back
to the n-space so that cuts, i.e., tighter inequalities still valid for all 0-1 solutions, are
introduced. It will be convenient to deal with homogeneous systems of inequalities,
i.e., with convex cones rather than polytopes. Therefore we embed the n-dimensional
space in R"™' as the hyperplane x,=1. (The Oth variable will play a special role
throughout.)

One way to view our constructions is to generate quadratic inequalities valid for
all 0-1 solutions. These may be viewed as homogeneous linear inequalities in the
(3) + n+1-dimensional space, and they define a cone there. (This space can be identified
with the space of symmetric (n+1) X (n+ 1) matrices.) We then combine these quadratic
inequalities to eliminate all quadratic terms in order to obtain linear inequalities not
derivable directly. This corresponds to projecting the cone down the n+ 1-dimensional
space.

l.a. The construction of matrix cones and their projections. Let K be a convex
cone in R"*'. Let K* be its polar cone, i.e., the cone defined by

K*={ueR": u"x=0 for all xe K}.
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We denote by K° the cone spanned by all 0-1 vectors in K. Let Q denote the cone
spanned by all 0-1 vectors x e R"*' with x,= 1. We are interested in determining K°,
and generally we may restrict ourselves to subcones of Q. We denote by e; the ith unit
vector, and set f; = e,— e;. Note that the cone Q* is spanned by the vectors e; and f..
For any (n+1) x (n+1) matrix Y, we denote by Y the vector composed of the diagonal
entries of Y.

Let K,=Q and K,< Q be convex cones. We define the cone M(K,, K,)<
R!"FXD consisting of all (n+1) x (n+1) matrices Y = (y;) satisfying (i), (i), and
(iii) below (for motivation, the reader may think of Y as a matrix of the form xx”,
where x is a 0-1 vector in K, N K,).

(i) Y is symmetric;
(ii) Y= "Yey,i.e., yi=yo forall 1Si=n;

(iii) u"Yv=0 holds for every ue K¥* and ve K¥.

Note that (iii) can be rewritten as

(iii') YK¥<cK,.

We shall also consider a slightly more complicated cone M, (K, K,), consisting
of matrices Y satisfying the following condition, in addition to (i), (ii), and (iii):

(iv) Y is positive semidefinite.

From the assumption that K, and K, are contained in Q it follows that every
Y =(yy) € M(K,, K) satisfies y; Z0, y; = i = Yo: = Yoo, and y; Z yi; + y; — Yoo-

These cones of matrices are defined by linear constraints and so their polars can
also be expressed quite nicely. Let U,,q denote the cone of positive semidefinite
(n+1)x(n+1) matrices (which is self-dual in the space Uy, of symmetric matrices),
and Uy, the linear space of skew symmetric (n+1)x (n+1) matrices (which is the
orthogonal complement of U,,,). Let U, denote the linear space of (n+1)x(n+1)
matrices (wy), where wy; = —w;; for 1=j=n, wyo=0 and w; =0if i#0 and i# j. Note
that U, is generated by the matrices fie] (i=1,-- -, n).

With this notation, we have, by definition,

M(K,, K;)*= U,+ Uyew+cone {uv: ue K¥ ve K¥},
and
M, (K, Kp)*= U+ Ugpey+ Upsa+cone{uv": ue K¥,ve K3}
Note that only the last term depends on the cones K, and K. In this term, it would
be enough to let u and v run over extreme rays of K¥ and K%, respectively. So if K;
and K, are polyhedral, then so is M(K,, K,), and the number of its facets is at most
the product of the numbers of facets of K, and K,.
Note that U, and hence M. (K,, K,) will generally be nonpolyhedral.

We project down these cones from the (n+1) X (n+1)-dimensional space to the
(n+1)-dimensional space by letting

N(K,, K,)={Ye,: Ye M(K,, K;))}={Y: Ye M(K,, K;)}
and
N.(K,, K,)={Ye,: YeM,.(K,, Kz)}={l7: Ye M. (K, K>)}.

Clearly, M(K,, K,)= M(K,, K,) and so N(K,, K,)= N(K,, K,) (and similarly for
the “+” subscripts).

If Aec R X"+ g a linear transformation mapping the cone Q onto itself, then
clearly M(AK,, AK,)=AM(K,, K,)A™. If n=2, then from AQ = Q it easily follows
that A”e, is parallel to e,, and hence N(AK,, AK;) =AN(K,, K;). In particular, we
can “flip” coordinates, replacing x; by x,—x; for some i# 0.
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If K, and K. are polyhedral cones, then so too are M(K,, K5) and N (K, K>).
The cones M. (K,, K,) and N.(K;, K,) are also convex (but generally not polyhedral),
since (iv) is equivalent to an infinite number of linear inequalities.

Lemma 1.1. (K, N K,)°< N.(K;, Ky) € N(K;, K,)c K, NK,.

Proof. (1) Let x be any nonzero 0-1 vector in K, K,. Since K, < Q, we must
have x,=1. Using this it is easy to check that the matrix Y =xx" satisfies (i)-(iv)-
Hence x = Ye,e N.(K;, K>).

(2) N.(K,, K,)=(K,, K,) trivially.

(3) Let x€ N(K,, K,). Then there exists a matrix Y satisfying (i)-(iv) such that
x = Ye,. Now, by our hypothesis that K, < Q, it follows that e, K%, and hence by
(iii"), x = Ye, is in K,. Similarly, x € K. 0

We will see that, in general, N(K,, K,) will be much smaller than K, N K.

The reason why we consider two convex cones instead of one is technical. We
shall need only two special choices: either K;=K,=K or K, =K, K,=Q. It is easy
to see that

N(K,NK,, K,NK,)s N(K,, K>) € N(K,NK,, Q).

This suggests that it would suffice to consider N (K, K); but, as we shall see, N(K, Q)
behaves algorithmically better (see Theorem 1.6 and the remark following it), and this
is why we allow two different cones. To simplify notation, we set N(K)= N(K, Q)
and M(K)=M(K, Q). In this case, K¥=Q* is generated by the vectors ¢; and f;,
and hence (iii’) has the following convenient form:

(iii”) Every column of Y is in K; the difference of the first column and any other
column is in K.

1.b. Properties of the cut operators. We give a lemma that yields a more explicit
representation of constraints valid for N(K) and N.(K). Unfortunately, the geometric
meaning of N(K) and N,(K) is not immediate; Lemmas 1.3 and 1.5 may be of som e
help in visualizing these constructions.

LEMMA 1.2. Let K = Q be a convex cone in R"™' and we R"*".

(a) we N(K)* if and only if there exist vectors a,, - - -, a,€ K*, a real number A,
and a skew symmetric matrix A such that a;+\e;+Ae, e K* for i=1,---,n, arnna
w=Y._, ai+ Al (where 1 denotes the all-1 vector).

(b) we N.(K)* if and only if there exist vectors a,,- - -, a,€ K*, a real number
A, a positive semidefinite symmetric matrix B, and a skew symmetric matrix A such thcaii
a;+Le,+ Ae;+ Be,e K* fori=1,--- n,and w=Y_ a,+Al+ B1.

Proof. Assume that we N(K)*. Then weq € M(K)*, and so we can write

weq =Y a,bl+ Y refT+A,
i =1

i

where a,€ K*, b,e Q*, A;€R, and A is a skew symmetric matrix. Since Q* is spanned
by the vectors ¢; and f;, we may express the vectors b; in terms of them and obtain a
representation of the form

(1) weg =Y ael + Y afl+3 AefT+A,
i=1 i=1 i=1

= i=

where a;, @€ K*. Multiplying (1) by ¢; from the right we get

2) 0=a,—d,— e+ Ae,.
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Multiplying (1) by e, and using (2) we get

n n n
W=Z ﬁ,+Z )\,~€,~+A€0=z a,'+
i=1 i=1

i=1 i

Ae,+Aey= Y a;,+Al.
=1

i=1

Here a;—\e;+ Ae; = a;€ K*. Since, trivially, ¢;€ K*, this condition remains valid if
we decrease A;. Hence we can choose all the A; = —\ equal. This proves the necessity
of the condition given in (a).

The sufficiency of the condition, as well as of assertion (b), are proved by similar
arguments. O

Our next lemma gives a geometric property of N(K), which is easier to apply
than the algebraic properties discussed before. Let H;={xeR""': x;=0} and G;=
{xeR""": x; =x,}. Clearly, H; and G; are hyperplanes supporting Q at a facet, and all
facets of Q are determined this way.

LeEMMA 1.3. For every convex cone K < Q and every 1=i=n,

N(K)< (KN H)+(KNG;).

Proof. Consider any xe N(K) and let Y € M(K) be a matrix such that Ye,= x.
Let y; denote the ith column of Y. Then by (ii), y; € G, and by (iii"), y; € K, so y;€ KN G..
Similarly, yo—y,€ KN H;, and so Ye,=y,=(yo—y)+yie (KNH)+(KNG,). 0O

Let us point out the following consequence of this lemma: if K N G, = {0}, then
N(K)< H,. If, in particular, K meets both opposite facets of Q only in the 0 vector,
then N(K)=1{0}. This may be viewed as a very degenerate case of Gomory-Chvital
cuts (see below for more on the connection with Gomory-Chvital cuts).

One could define a purely geometric cutting procedure based on this lemma: for
each cone K < Q, consider the cone

(3) No(K)=N; (KN G)+ (KN H,)).

This cone is similar to N(K) but is generally bigger. We remark that this cone could
also be obtained from a rather natural matrix cone by projection: this arises by imposing
(ii), (iii), and the following restricted form of (i): yy; =y, fori=1,---, n.

Figure 1 shows the intersection of three cones in R® with the hyperplane x; =1:
the cones K, N(K), and N(N(K)), and the constraints implied by Lemma 1.3. We
see that the cone in Lemma 1.3 gets close to N(K) but does not coincide with it.

We remark that N(K N H;)=N(K)NH,fori=1,-- -, n;itshould be noted that
N(K N H;) does not depend on whether it is computed as a cone in R"*' or in H,.

We can get a better approximation of K° by iterating the operator N. Define
N'(K) recursively by N°(K)=K and N'(K)=N(N'"'(K)) for t=1.

THEOREM 1.4. N"(K)=K".

Proof. Consider the unit cube Q'inthe hyperplane x,=0andlet 1 =t = n. Consider
any face F of Q' of dimension n—t and let F be the union of faces of Q' parallel to

FiG. 1



172 L. LOVASZ AND A. SCHRIJVER

F. We prove, by induction on ¢, that
(4) NY(K)ccone (KN F).

For t= n, this is just the statement of the theorem. For =1, this is equivalent to
Lemma 1.3.

We may assume that F contains the vector ¢,. Let F' be an (n — ¢+ 1)-dimensional
face of Q' containing F and let i be an index such that F'(l H; = F. Then, by the
induction hypothesis,

N"YK)<=cone (KNF).
Hence by Lemma 1.3,
N'(K)=N(N"YK))ccone (N(K)N(H,UG))
c cone ([cone (K NF') N H;]U[cone (KNF)N G,]).

Now H; is a supporting plane of cone (K N'F’) and hence its intersection with the
cone is spanned by its intersection with the generating set of the cone:

cone (KNF)N H;=cone (KNF NH;)<cone (KN F).
Similarly,
cone (KN F)N G; < cone (KN F).

Hence (4) follows. ]

Next we show that if we use positive semidefiniteness, i.e., we consider N, (K),
then an analogue of Lemma 1.3 can be obtained that is more complicated but important
in the applications to combinatorial polyhedra.

LEMMA 1.5. Let K < Q be a convex cone and let acR""" be a vector such that
a;=0fori=1,--,nand ay=0. Assume that a"x=0 is valid for K N G; for all i such
that a; <0. Then a™x =0 is valid for N.(K).

(The condition that a,=0 excludes only trivial cases. The condition that a@; =0 is
a normalization, which can be achieved by flipping coordinates.)

Proof. First, assume that a,=0. Consider a subscript i such that a;<0. (If no
such i exists, we have nothing to prove.) Then for every x € G;\{0}, we have a "x = a;x; <
0, and so, x £ K. Hence K N G;={0}, and so by Lemma 1.3, N.(K)< N(K)< KN H,.
As this is true for all i with a; <0, we know that a’x =0 for all xe N,(K).

Second, assume that a,>0. Let xe N,(K) and let Ye M_.(K) be a matrix with
Ye,=x. For any 1=i=n, the vector Ye; is in K by (iii") and in G; by (ii); so by
the assumption on a, a'Ye;=0 whenever aq;<0. Hence a’Y(aje,—a)=
a’Y(-a,e,—---—a,e,) =0 (since those terms with a;=0 do not contribute to the
sum anyway), and hence a’Y(ape))=a’Ya=0 by positive semidefiniteness.
Thus a"Yeo=a"x=0. O

l.c. Algorithmic aspects. Next we turn to some algorithmic aspects of these con-
structions. We have to start by sketching the framework we are using; for a detailed
discussion, see Grotschel, Lovasz, and Schrijver [14].

Let K be a convex cone. A strong separation oracle for the cone K is a subroutine
that, given a vector x € Q""', either returns that x € K or returns a vector w € K* such
that x"w <0. A weak separation oracle is a version of this which allows for numerical
errors: its input is a vector x€ Q" and a rational number &€ > 0, and it either returns
the assertion that the euclidean distance of x from K is at most &, or returns a vector
w such that |w|=1, w"x = ¢, and the euclidean distance of w from K* is at most &. If
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the cone K is spanned by 0-1 vectors, then we can strengthen a weak separation oracle
to a strong one in polynomial time.

Let us also recall the following consequence of the ellipsoid method: Given a
weak separation oracle for a convex body, together with some technical information
(say, the knowledge of a ball contained in the body and of another one containing
the body), we can optimize any linear objective function over the body in polynomial
time (again, allowing an arbitrarily small error). If we have a weak separation oracle
for a convex cone K < Q, then we can consider its intersection with the halfspace
xo=1; using the above result, we can solve various important algorithmic questions
concerning K in polynomial time. We mention here the weak separation problem for
the polar cone K*,

THEOREM 1.6. Suppose that we have a weak separation oracle for K. Then the weak
separation problem for N(K) as well as for N.(K) can be solved in polynomial time.

Proof. Suppose that we have a (weak) separation oracle for the cone K. Then we
have a polynomial time algorithm to solve the (weak) separation problem for the cone
M(K). In fact, let Y be any matrix. If it violates (i) or (ii), then this is trivially
recognized and a separating hyperplane is also trivially given. (iii) can be checked as
follows: we have to know if Yu e K holds for each u € Q*. Clearly it suffices to check
this for the extreme rays of Q¥ i.e., for the vectors ¢; and f;. But this can be done
using the separation oracle for K.

Since N(K) is a projection of K, the weak separation problem for N(K) can
also be solved in polynomial time (by the general results from [14]).

In the case of N.(K), all we have to add is that the positive semidefiniteness of
the matrix Y can be checked by Gaussian elimination, pivoting always on diagonal
entries. If we always pivot positive elements, the matrix is positive semidefinite. If the
test fails, it is easy to construct a vector v with v” Yv < 0; this gives, then, a hyperplane
separating Y from the cone. a

We remark that this proof does not remain valid for N(K, K). In fact, let K be
the cone induced by the incidence vectors of perfect matchings of a graph G with m
nodes (with “1” appended as a Oth entry). Then the separation problem for K can be
solved in polynomial time. On the other hand, consider the matrix Y =(Y}), where

_{1, ifi=j or i=0 or j=0,
Vi = —4(m+2)/m?, otherwise.

Then Ye M(K, K) if and only if G is 3-edge-colorable, which is NP-complete
to decide. We do not know if Theorem 1.6 extends to N (K, K), but suspect that it
does not.

Note, however, that if K is given by an explicit system of linear inequalities, then
M (K, K) is described by a system of linear inequalities of polynomial size and so the
separation problem for N(K, K) and N,(K, K) can be solved in polynomial time. In
this case, we get a projection representation of N(K) and of N(K, K) from polyhedra
with a polynomial number of facets. It should be remarked that this representation is
canonical.

1.d. Stronger cut operators. We could use stronger versions of this procedure to
get convex sets smaller than N(K).

One possibility is to consider N(K, K) instead of N(K)= N(K, Q). It is clear
that N(K, K)< N(K). Trivially, Theorem 1.4 and Lemma 1.3 remain valid if we
replace N(K) by N(K, K). Unfortunately, it is not clear whether Theorem 1.6 also
remains valid. The problem is that now we have to check whether YK*c K, and



174 L. LOVASZ AND A. SCHRIJVER

unfortunately K* may have exponentially many, or even infinitely many, extreme rays.
If K is given by a system of linear inequalities, then this is not a problem. So in this
case we could consider the sequence N(K, K), N(N(K, K), K), etc. This shrinks
down faster to K° than N'(K), as we shall see in the next section.

The following strengthening of the projection step in the construction seems quite
interesting. For veR""", let M(K)v={Yv: Ye M(K)}. So N(K)=M(K)e,. Now
define

N(K)=Necin(om M(K)o.
Note that the intersection can be written in the form
N(K)=Nycor M(K)(eg+u).
It is easy to see that
K°c N(K)< N(K).

The following lemma gives a different characterization of N (K).

Lemma 1.7. xe N(K) if and only if for every w cR"*' and every u € Q* such that
(eo+u)w' € M(K)*, we have w'x=0.

In other words, N (K)* is generated by those vectors w for which there exists a
veint (Q*) such that ow” € M(K)*.

Proof. (Necessity) Let xe N(K), weR"™, and veint (Q*) such that vw” e
M (K)*. Then in particular x can be written as x = Yv, where Y € M(K). So w'x=
wiYo=Y- (vw’)=0.

(Sufficiency) Assume that x¢ N(K). Then there exists a v eint (K*) such that
x & M(K)v. Now M(K)v is a convex cone, and hence it can be separated from x by
a hyperplane, i.e., there exists a vector weR""' such that w'x<0 but w’ Yo =0 for
all Y e M(K). This latter condition means that vw” € M (K)*, i.e., the condition given
in the lemma is violated. 0

The cone N(K) satisfies important constraints that the cones N(K) and N,(K)
do not. Let beR""", and define F, ={xeR"": b"x=0}.

Lemma 1.8. Assume that N(K N F,)={0}. Then —be ]Q(K)*.

Proof. 1f N(K N F,) ={0}, then for every matrix Y e M(K N F,) we have Ye,=0.
In particular, Yy, =0 and hence Y=0. So M(K N F,) ={0}. Since clearly

M(KNF,)*=M(K)*+cone {bu”: ue Q*},

this implies that M(K)*+{bu": ue Q*}=R"*"*"*1) S0, in particular, we can write
—beq =Z+bu” with Ze M(K)* and ue Q*. Hence —b(e,+u)” € M(K)*. By the
previous lemma, this implies that —b e N/(K)*. 0

We can use this lemma to derive a geometric condition on N(K) similar to
Lemma 1.5.

LemMmMma 1.9. Let K < Q be a convex cone and assume that e, & K. Then

N(K)s(KNG)+---+(KNG,).

In other words, if a”x = 0 is valid for all of the faces K N G,, then it is also valid
for N(K).

Proof. Let b=—a+ te,, where t> 0. Consider the cone K 1 F,. By the definition
of b, this cone does not meet any facet G; of Q in any nonzero vector. Hence by
Lemma 1.3, N(K N F,) is contained in every facet H; of Q, and hence N(K N F,) <
cone (). But N(K N F,) <= K and so N(K N F,)={0}.

Hence by Lemma 1.7, we get that —b =a —te€ N(K)*. Since this holds for every
t<a and N(K)* is closed, the lemma follows. ]
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Applying this lemma to the cone in Fig. 1, we can see that we obtain K° in a
single step. The next corollary of Lemma 1.9 implies that at least some of the Gomory-
Chvital cuts for K are satisfied by IQI(K).

CoroLLARY 1.10. Let 1=k =n and assume that Zf;l x; >0 holds for every x € K.
Then Zle X; 2 xy holds for every x e N(K).

The proof consists of applying Lemma 1.9 to the projection of K on the first k+1
coordinates.

Unfortunately, we do not know if Theorem 1.6 remains valid for N (K). Of course,
the same type of projection can be defined starting with M.(K) or with M(K, K)
instead of M (K), and properties analogous to those in Lemmas 1.8, 1.9 can be derived.

2. Stable set polyhedra. We apply the results in the previous section to the stable
set problem. To this end, we first survey some known methods and results on the facets
of stable set polytopes.

2.a. Facets of stable set polyhedra and perfect graphs. Let G=(V, E) be a graph
with no isolated nodes. Let «(G) denote the maximum size of any stable set of nodes
in G. For each A< V, let y*€R" denote its incidence vector. The stable set polytope
of G is defined as

STAB (G)=conv {x*: A is stable}.

So the vertices of STAB (G) are just the 0-1 solutions of the system of linear inequalities

(1) x;Z0 foreachicV,
and
(2) x;+x;=1 for each ije E.

In general, STAB (G) is much smaller than the solution set of (1), (2), which we
denote by FRAC (G) (““fractional stable sets”). In fact, they are equal if and only if
the graph is bipartite. The polytope FRAC (G) has many nice properties; what we
will need is that its vertices are half-integral vectors.

There are several classes of inequalities that are satisfied by STAB (G) but not
necessarily by FRAC (G). Let us mention some of the most important classes. The
cliqgue constraints strengthen the class (2): for each clique B, we have
(3) Y ox=1.

icB
Graphs for which (1) and (3) are sufficient to describe STAB (G) are called perfect.
It was shown by Grétschel, Lovasz, and Schrijver [12] that the weighted stable set
problem can be solved in polynomial time for these graphs.

The odd hole constraints express the nonbipartiteness of the graph: if C induces

a chordless odd cycle in G, then
(4) 3 w=h(Cl-n.
Of course, the same inequality holds if C has chords; but in this case it easily follows
from other odd hole constraints and edge constraints. Nevertheless, it will be convenient
that, if we apply an odd hole constraint, we do not have to check whether the circuit
in question is chordless.

Graphs for which (1), (2), and (4) are sufficient to describe STAB (G) are called
t-perfect. Graphs for which (1), (3), and (4) are sufficient are called h-perfect. It was
shown by Grotschel, Lovész, and Schrijver [13] that the weighted stable set problem
can be solved in polynomial time for h-perfect (and hence also for t-perfect) graphs.
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The odd antihole constraints are defined by sets D that induce a chordless odd
cycle in the complement of G:

(5) Y x=2.

We shall see that the weighted stable set problem can be solved in polynomial time
for all graphs for which (1)-(5) are enough to describe STAB (G) (and for many more
graphs).

All constraints (2)-(5) are special cases of the rank constraints: let U < V induce
a subgraph Gy, then
(6) .ZU x,-éa(GU).

Of course, many of these constraints are inessential. To specify some that are essential,
let us call a graph G a-critical if it has no isolated nodes and a(G —e)> a(G) for
every edge e. Chvatal [9] showed that if G is a connected a-critical graph then the
rank constraint
L x=a(G)
ie V(G)
defines a facet of STAB (G).

(Of course, in this generality, rank constraints are ill behaved: given any one of
them, we have no polynomial time procedure to verify that it is indeed a rank constraint,
since we have no polynomial time algorithm to compute the stability number of the
graph on the right-hand side. For the special classes of rank constraints introduced
above, however, it is easy to verify that a given inequality belongs to them.)

Finally, we remark that not all facets of the stable set polytope are determined
by rank constraints. For example, let U induce an odd wheel in G, with center uoe U.
Then the constraint

|Ul-2 [Ul-2
x; + Xy =
ic U\{uo} 2 2

is called a wheel constraint. If, e.g., V(G)= U, then the wheel constraint induces a
facet of the stable set polytope.

Another class of nonrank constraints of a rather different character are orthogonal-
ity constraints, introduced by Grotschel, Lovasz, and Schrijver [12]. Let us associate
with each vertex i€ V, a vector v; € R", so that |v;| =1 and nonadjacent vertices corre-
spond to orthogonal vectors. Let ce R" with |c|=1. Then

Y (cTv)*x =1

ieV
is valid for STAB (G). The solution set of these constraints (together with the nonnega-
tivity constraints) is denoted by TH (G). It is easy to show that

STAB (G) = TH (G) = FRAC (G).

In fact, STAB (G) satisfies all the clique constraints. Note that there are infinitely
many orthogonality constraints for a given graph, and TH (G) is in general nonpolyhe-
dral (it is polyhedral if and only if the graph is perfect). The advantage of TH (G) is
that every linear objective function can be optimized over it in polynomial time. The
algorithm involves convex optimization in the space of matrices, and was the main
motivation for our studies in the previous section. We shall see that these techniques
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give substantially better approximations of STAB (G) over which one can still optimize
in polynomial time.

2.b. The “N’’ operator. To apply the results in the previous chapter, we homogen-
ize the problem by introducing a new variable x, and consider STAB (G) as a subset
of the hyperplane H, defined by x,=1. We denote by St (G) the cone spanned by the

vectors
( IA) e RVU{O}
X

where A is a stable set. We get STAB (G) by intersecting ST (G) with the hyperplane
xo=1. Similarly, let FR (G) denote the cone spanned by the vectors (1), where
x € FRAC (G). Then FR(G) is determined by the constraints

x;=0 foreachieV,
and
x;+x,=x, foreachijeE.

Since it is often easier to work in the original n-dimensional space (without
homogenization), we shall use the notation N(FRAC (G))= N(FR (G))N H,, and
similarly for N, N, etc. We shall also abbreviate N(FRAC (G)) by N(G), etc. Since
FRAC (G) is defined by an explicit linear program, one can solve the separation
problem for it in polynomial time. We shall say briefly that the polytope is polynomial
time separable. By Theorem 1.6, we obtain the following.

THEOREM 2.1. For each fixed r=0, N .(G), as well as N'(G), are polynomial time
separable.

It should be remarked that, in most cases, if we use N"(G) as a relaxation of
STAB (G), then it does not really matter whether the separation subroutine returns
hyperplanes separating the given x2 N'(G) from N'(G) or only from STAB (G).
Hence it is seldom relevant to have a separation subroutine for a given relaxation, say,
N'(G); one could use just as well a separation subroutine for any other convex body
containing STAB (G) and contained in N'(G) (such as, e.g., N.(G)). Hence the
polynomial time separability of N1(G) is substantially deeper than the polynomial
time separability of N"(G) (even though it does not imply it directly).

In the rest of this section we study the question of how much this theorem gives
us: which graphs satisfy N1(G)=STAB (G) for small values of r, and more generally,
which of the known constraints are satisfied by N(G), N.(G), etc. With a little abuse
of terminology, we shall not distinguish between the original and homogenized versions
of clique, odd hole, etc., constraints.

It is a useful observation that if Y =(y;)e M(FR(G)), then y;=0 whenever
ij € E(G). In fact, the constraint x; + x; = 1 must be satisfied by Ye;, andso y; +y; = yo; =
yu by nonnegativity. This implies y; =0.

Let a"x=b be any inequality valid for STAB (G). Let W< V and let ay, eRY
be the restriction of a to W. For every ve V, if a’x=b is valid for STAB (G),
then ay_,x=b is valid for STAB(G—v) and ay_pu-,x=b—a, is valid for
STAB (G —TI'(v) — v). Let us say that these inequalities arise from a "x = b by the deletion
and contraction of node v, respectively. Note that if a’x = b is an inequality such that
for some v, both the deletion and contraction of v yield inequalities valid for the
corresponding graphs, then a"x=b is valid for G.

Let K be any convex body containing STAB (G) and contained in FRAC (G).
Now Lemma 1.3 implies the following lemma.
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LemMA 2.2. If a"x = b is an inequality such that for some v € V, both the deletion
and contraction of v give an inequality valid for K, then a"x = b is valid for N(K).

This lemma enables us to characterize completely the constraints obtained in one
step (not using positive semidefiniteness).

THEOREM 2.3. The polytope N(G) is exactly the solution set of the nonnegativity,
edge, and odd hole constraints.

Proof. (1) Itis obvious that N(G) satisfies the nonnegativity and edge constraints.
Consider an odd hole constraint ¥, x; =3(|C|—1). Then for any ie C, both the
contraction and deletion of i result in an inequality trivially valid for FRAC (G).
Hence the odd hole constraint is valid for N(G) by Lemma 2.2.

(2) Conversely, assume that x e R satisfies the nonnegativity, edge, and odd hole
constraints, We want to show that there exists a nonnegative symmetric matrix Y =
(yy) eRUTIX D guch that yio=y,; = x; for all ISi=n, yo=1, and

x,~+xj+xk—l§y,»k+yjk§xk

for all i, j, ke V such that jje E (the lower bound comes from the condition that
Yf. € FR (G); the upper, from the condition that Ye, € FR (G)). Note that the constraint
has to hold in particular when i = k; then the upper bound implies that y; =0, while
the lower bound is automatically satisfied.

The constraints on the y’s are of a special form: they involve only two variables.
We can therefore use the following (folklore) lemma, which gives a criterion for the
solvability of such a system, more combinatorial than the Farkas lemma.

LEMMA 2.4. Let H=(W, F) be a graph and let two values 0= a(ij) = b(ij) be
associated with each edge of H. Let U = W also be given. Then the linear system

a(il=y;+y;=b(i)  (fjeF),
»iz0 (ie W),
y,~=0 (IE U)

has no solution if and only if there exists a sequence of (not necessarily distinct) vertices

Vg, U1, " *, U, Such that v; and v,., are adjacent (the sequence is a walk), and one of
the following holds:

(a) pis odd and b(vov,) — a(v,v,) + b(va03)—- - -+ b(v,_,v,) <O;

(b) p is even, vy=1v,, and b(vyv,) — a(v,v,)+ b(v,0;) =+ - - —a(v,-,v,) <0;

(¢) pis even, v, € U, and b(vov,) — a(v,v,) + b(v,05) =+ - - —a(v,-,1,) <0;

(d) pis odd, vy, v, € U, and —a(vyv,)+b(v,0,) ~a(v,v3)~- - - —a(v,_,v,) <0.

In our case, we have as W the set of all pairs {i, j} (i #j), U is the subset consisting
of the edges of G, two pairs, {i, j} and {k, I}, are adjacent in H if and only if i = k and
je€ E(G), and a(ij, jk) =x;+x+x,—1, b(ij, jk)=x;. We want to verify that if x
satisfies all the odd hole constraints, then none of the walks of types (a)-(d) in the
lemma above can occur. Let us ignore, for a while, how the walk ends. The vertices
of the walk in H correspond to pairs ij; the edges in the walk correspond to triples
(ijk) such that ik € E. Let us call this edge the bracing edge of the triple. We have to
add up alternately x; and 1 —x; — x; — x;; call the triple positive and negative accordingly.

Let w be a vertex of G that is not an element of the first and last pair v, and v,.
Then following the walk, w may become an element of a v;, stay an element for a
while, and then cease to be; this may be repeated, say, f(w) times. It is then easy to
see that the total contribution of the variable x, to the sum is —f(w)x,,.
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It is easy to settle case (b) now. Then any v; can be considered first, and so the
above counting applies to each vertex (unless all pairs v; share a vertex of G, which
is a trivial case). So the sum

b(vyvy) —a(v,v) + b(v03) = - - —a(v,-,v,) =§—Z S(w)x,,.

But note that every vertex w occurs in exactly 2f(w) bracing edges. If we add up the
edge constraints for all bracing edges, we get p—Y.  2f(w)x, =0, which shows that
(b) cannot occur.

Cases (a) and (c) take only a little care around the end of the walk, and are left
to the reader. Let us show how case (d) can be settled, which is the only case in which
the odd hole constraints are needed.

Consider again the bracing edges of the triples, but now, count the pairs v, and
v, (which are edges of G) as bracing edges. Again, it is easy to see that the total sum
in question is (p+1)/2—} f(w)x,, where each w is contained in exactly 2f(w) bracing
edges. Unfortunately, we now have p+2 bracing edges, so adding up the edge con-
straints for them would not yield the nonnegativity of the sum. But observe that the
multiset of bracing edges (we count an edge that is bracing in more than one triple
with multiplicity) forms an Eulerian graph, and is, therefore, the union of circuits.
Since the total number of bracing edges, p+2, is odd, at least one of these circuits is
odd. Add up the odd hole constraint for this circuit and the edge constraint, divided
by two, for each of the remaining bracing edges. We get that ¥ f(w)x,=(p+1)/2,
which shows that (d) cannot occur. O

CoroLLARY 2.5. If G is t-perfect, then STAB (G) is the projection of a polytope
whose number of facets is polynomial in n. Moreover, this representation is canonical. ]

This corollary generalizes a result of Barahona and Mahjoub [5] that constructs
a projection representation for series-parallel graphs. It could also be derived in an
alternative way. The separation problem for the odd cycle inequalities can be reduced
to n shortest path problems (see [13]). Following this construction, one can see that
a vector x is in the stable set polytope of a t-perfect graph if and only if n potential
functions exist in an auxiliary graph. This yields a representation of STAB (G) as the
projection of a polytope with O(n?) facets. (We are grateful to the referee for this
remark.)

2.c. The repeated ““N”’ operator. Next, we prove a theorem which describes a
large class of inequalities valid for N"(G) for a given r. The result is not as complete
as in the case r=1, but it does show that the number of constraints obtainable grows
very quickly with r.

Let a"x=b be any inequality valid for STAB (G). By Theorem 1.4, there exists
an r=0 such that a 'x = b is valid for N"(G). Let the N-index of the inequality be
defined as the least r for which this is true. We can define (and will study later) the
N, -index analogously. Note that in each version, the index of an inequality depends
only on the subgraph induced by those nodes having a nonzero coefficient. In particular,
if these nodes induce a bipartite graph, then the inequality has N-index 0. We can
define the N-index of a graph as the largest N-index of the facets of STAB (G). The
N-index of G is 0 if and only if G is bipartite; the N-index of G is 1 if and only if
G is t-perfect. Lemma 2.2 implies the following corollary (using the obvious fact that
the N-index of an induced subgraph is never larger than the N-index of the whole
graph).

COROLLARY 2.6. If for some node v, G—v has N-index k, then G has N-index at
most k+1. 0
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The following lemma about the iteration of the operator N will be useful in
estimating the N-index of a constraint.

LeMMaA 2.7. 1/(k+2)1e N¥(G) (k=0).

Proof. We use induction on k. The case k=0 is trivial. Consider the matrix
Y = (y,) e RVVIPVUOD defined by

1 ifi=j=0,
y;=41/(k+1), ifi=0 and j>0 ori>0 and j=0 ori=j>0,
0, otherwise.

Then Y € M(N*'(FR (G))), since

1

Ye,=
4= k2

(eo+€)eST (G)< N*"Y(FR (G))

and

k+1 1 k+1 1 e
Yf= 2 eo+j¢zo'i 2 6= 2 (e0+ 1 jEZV ej) e N“ " (FR (G)),
and so by the monotonicity of N*"'(FR (G)), Yfie N*"'(FR (G)). Hence the first
column of Y is in N*(FR (G)), and thus 1/(k+2)1e NY(G). O
From these two facts, we can derive some useful bounds on the N-index of a graph.
CoROLLARY 2.8. Let G be a graph with n nodes and at least one edge. Assume that
G has stability number a(G) = a and N-index k. Then

ﬁ——2§k§n—-a—-l.
(o4

Proof. The upper bound follows from Corollary 2.6, applying it repeatedly to all
but one nodes outside a maximum stable set. To show the lower bound, assume that
k<(n/a)—2. Then the vector (1/(k+2))1 does not satisfy the constraint ), x; = « and
so it does not belong to STAB (G). Since it belongs to N*(G) by Lemma 2.7, it follows
that N*(G) # STAB (G)—a contradiction. 0O

It follows in particular that the N-index of a complete graph on ¢ vertices is t —2.
The N-index of an odd hole is 1, as an odd whole is a z-perfect graph. The N-index
of an odd antihole with 2k+1 nodes is k; more generally, we have the following
corollary.

COROLLARY 2.9. The N-index of a perfect graph G is w(G)—2. The N-index of a
critically imperfect graph G is w(G)—1.

Next we study the index of a single inequality. Let a’x=<b be any constraint
valid for STAB(G) (aeZY,beZ,). Define the defect of this inequality as 2Xx
max {a” —b: x € FRAC (G)}. The factor 2 in front guarantees that this is an integer.
In the special case when we consider the constraint ), x; = & (G) for an a-critical graph
G, the defect is just the Gallai class number of the graph (see Lovasz and Plummer
[18] for a discussion of a-critical graphs, in particular of the Gallai class number).

Given a constraint, its defect can be computed in polynomial time, since optimizing
over FRAC (G) is an explicit linear program. The defect of a constraint is particularly
easy to compute if the constraint defines a facet of STAB (G). This is shown by the
following lemma, which states a property of facets of STAB (G) of independent interest.

LEmMMA 2.10. Let ¥, a;x;=b define a facet of STAB (G), different from those
determined by the nonnegativity and edge constraints. Then every vector v maximizing
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a”x over FRAC (G) has v; =% whenever a;>0. In particular,

max {a"x: xe FRAC (G)} =%z_ a;

and the defect of the inequality is Y, a; —2b.
Proof. Let v be any vertex of FRAC (G) maximizing a"x. It suffices to prove that
v; # 1 whenever a;> 0; this will imply that the vector (3, - - -, )7 also maximizes a"x,
and to achieve the same objective value, v must have v, =1 whenever a, > 0.
Let U={ie V: v; =1} and assume, by way of contradiction, that a(U) > 0. Clearly
U is a stable set. If we choose v so that U is minimal (but of course nonempty), then
a;>0 for every i€ U. Let I'(U) denote the set of neighbors of U. Let X be any stable
set in G whose incidence vector x* is a vertex on the facet of STAB (G) determined
by a"x=b.
Consider the set Y=UU(X\I'(U)). Clearly, Y is stable and a(Y)=
a(X)+a(U\X)-a(I'(U)N X). So, by the optimality of X, we have
a(U\X)=a(l'(U)N X).
On the other hand, consider the vector weR" defined by
1, ifieUNX,
w; =40, ifiel(U)\X,

i, otherwise.

Then we FRAC (G) and a'w= a"v+3a(I'(U)N X) —1a(U\X) = a"v. By the optimal-
ity of v, we must have equality, and so a(U\X)=a(['(U)N X). But this means that
x™ satisfies the linear equation
¥ a;x;=a(U).
ieUUI(U)

So this linear equation is satisfied by every vertex of the facet determined by a’x = b.
The only way this can happen is that it is the equation a"x = b itself. But then a’v=b
and so a"v=b also defines a facet of FRAC (G), which was excluded. a

We need some further, related lemmas about stable set polytopes. These may be
viewed as weighted versions of results on graphs with the so-called Konig property;
see [18, § 6.3].

LEMMA 2.11. Let a €RY and assume that

max {a"x: x € STAB (G)} <max {a"x: x e FRAC (G)}.

Let E' be the set of those edges ij for which y;+ y; = 1 holds for every vector y e FRAC (G)
maximizing a"x. Then (V, E’) is nonbipartite.

Proof. Suppose that (V, E’) is bipartite. Let z be a vector in the relative interior
of the face F of FRAC (G) maximizing a "x. Then clearly

E'={ij€E:Z,~+Zj=1}
and
F={xe FRAC (G): x;+x;=1 for all ije E}.

Let (U, W) be a bipartition of (V, E’). In every connected component of (V, E’), z;=3
on at least one color class and hence we may choose (U, W) so that z; =3 for all
ie W. Then, W is a stable set in the whole graph G. Hence it follows that
x" € F. This implies that max {a"x: xe STAB (G)}=max {a "x: x e FRAC (G)}—a
contradiction. 0
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LEMMA 2.12. As in the previous lemma, let a e R} and assume that
max {a"x: xe STAB (G)} <max {a"x: xe FRAC (G)}.

Then there exists an i € V such that every vector y e FRAC (G) maximizing a"x has y; =3.

Proof. Let E' be as before. Then by Lemma 2.11, there exists an odd circuit C in
G such that E(C)< E'. If y is any vector in FRAC (G) maximizing a"x, then by the
definition of E’, y;+y;=1 for every edge ijc E(C), and hence y; =3 for every ie
V(C). 0

Now we can state and prove our theorem, which shows the connection between
defect and the N-index.

THEOREM 2.13. Let a’x=b be an inequality with integer coefficients valid for
STAB (G) with defect r and N-index k. Then

£§k§n

b

Proof. (Upper bound) We use induction on r. If r =0 we have nothing to prove,
so suppose that r>0. Then Lemma 2.12 can be applied and we get that there is a
vertex i such that every vector y optimizing a'x over FRAC (G) has y; =}. Note that
trivially a;> 0.

We claim that both the contraction and deletion of i result in constraints with
smaller defect. In fact, let y be a vertex of FRAC (G) maximizing ay_;x. If y also
maximizes a'x, then y; =3 and hence

20ay_;y—b)y=2(a"y—b)—a;<2(a’y-b)=r.
On the other hand, if y does not maximize ax, then
2ay_;y-b)=2(a"y—-b)<2-max{a’x—b: xe FRAC (G)} =r.
The assertion follows similarly for the contraction. Hence by the induction hypothesis,
the contraction and deletion of i yield constraints valid for N""'(G). It follows by
Lemma 2.2 that a 'x = b is valid for N"(G).

(Lower bound) By Lemma 2.7, (1/(k+2))1e N*(G), and so a’x=b must be
valid for (1/(k+2))1. So (1/(k+2))a"1=b and hence

kz——-2==— 0

It follows from our discussions that for an odd antihole constraint, the lower
bound is tight. On the other hand, it is not difficult to check that for a rank constraint
defined by an «-critical subgraph that arises from K, by subdividing an edge by an
even number of nodes, the upper bound is tight.

We would like to mention that Ceria [7] proved that N(FRAC (G), FRAC (G))
also satisfies, among others, the K,-constraints. We do not study the operator
K~ N(K, K) here in detail, but a thorough comparison of its strength with N and
N, would be very interesting.

A class of graphs interesting from the point of view of stable sets is the class of
line-graphs: the stable set problem for these graphs is equivalent to the matching
problem. In particular, it is polynomial time solvable and Edmonds’s description of
the matching polytope [10] provides a “‘nice” system of linear inequalities describing
the stable set polytope of such graphs. The N-index of line-graphs is unbounded; this
follows, e.g., by Corollary 2.8. This also follows from Yannakakis’s result [26] men-
tioned in the Introduction, since bounded N-index would yield a representation of
the matching polytope as a projection of a polytope with a polynomial number of
facets. We do not know whether or not the N, -index of line-graphs remains bounded.
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2.d. The ““N,” operator. Now we turn to the study of the operator N, for
stable set polytopes. We do not have as general results for the operator N, as for the
operator N, but we will be able to show that many constraints are satisfied even for
very small r.

Lemma 1.5 implies the following lemma.

LEMMA 2.14. If a"x = b is an inequality valid for STAB (G) such that for all ve V
with a positive coefficient the contraction of v gives an inequality with N.-index at most
r, then a"x = b has N, -index at most r+1.

The clique, odd hole, odd wheel, and odd antihole constraints have the property
that, contracting any node with a positive coefficient, we get an inequality in which
the nodes with positive coefficients induce a bipartite subgraph. Hence, we have the
following corollary.

COROLLARY 2.15. Clique, odd hole, odd wheel, and odd antihole constraints have
N, -index 1.

Hence all h-perfect (in particular all perfect and -perfect) graphs have N, -index
at most 1. We can also formulate the following recursive upper bound on the N, -index
of a graph.

CoROLLARY 2.16. If G—T'(v)—v has N -index at most r for every ve V, then G
has N, -index at most r+ 1.

Next, we consider the orthogonality constraints. To this end, consider the cone
My of (VU{0}) x (VU {0}) matrices Y = (y;) satisfying the following constraints:

(i) Y is symmetric;
(ii) yi =y, for every ie V;

(iii") y; =0 for every ij€ E,

(iv) Y is positive semidefinite.

As remarked, (iii’) is a relaxation of (iii) in the definition of M, (FR (G)). Hence
M. (FR (G)) & Myy.

LEMMA 2.17. TH (G) ={Yey: Y€ My, ef Ye,=1}.

Proof. Let xe TH (G). Then, by the results of Grotschel, Lovész, and Schrijver
[13], x can be written in the form x; = (v( v;)?, where the v; (i€ V) form an orthonormal
representation of the complement of G and v, is some vector of unit length. Set x,=1
and define Y, = v/ v;v/x,x;. Then it is easy to verify that Y € My, and Ye,=x.

The converse inclusion follows by a similar direct construction. a

This representation of TH (G) is not a special case of the matrix cuts introduced
in § 1 (though it is clearly related). In § 3 we will see that, in fact, TH (G) is in a sense
more fundamental than the relaxations of STAB (G) constructed in § 1. Right now we
can infer the following.

COROLLARY 2.18. Orthogonality constraints have N, -index 1.

We conclude with an upper bound on the N.-index of a single inequality. Since
a(G-T(v)—v)<a(G), Lemma 2.14 gives, by induction, Corollary 2.19.

COROLLARY 2.19. If a"™x=b is an inequality valid for STAB (G) such that the
nodes with positive coefficient induce a graph with independence number r, then a’x=b
has N.-index at most r. In particular, a’x = b has index at most b.

Let us turn to the algorithm aspects of these results. Theorem 2.1 implies the
following corollary.

COROLLARY 2.20. The maximum weight stable set problem is polynomial time
solvable for graphs with bounded N, -index.

Note that even for small values of r, quite a few graphs have N, -index at most
r. Collecting previous results, we obtain Corollary 2.21.

COROLLARY 2.21. For any fixed r=0, if STAB (G) can be defined by constraints
a"x = b such that either the defect of the constraint is at most r or the support contains



184 L. LOVASZ AND A. SCHRIJVER

no stable set larger than r, then the maximum weight stable set problem is polynomial
time solvable for G.

3. Cones of set-functions. Vectors in R® are just functions defined on the one-
element subsets of a set S; the symmetric matrices in the previous sections can be
considered as functions defined on unordered pairs. We show that if we consider
set-functions, i.e., functions defined on all subsets of S, then some of the previous
considerations become more general and sometimes even simpler.

In fact, most of the results extend to a general finite lattice in the place of the
boolean algebra, and we present them in this generality for the sake of possible other
applications.

3.a. Preliminaries: Vectors on lattices. Let us start with some general facts about
functions defined on lattices. Given a lattice L, we associate with it the matrix Z = ({;),
called the zeta-matrix of the lattice, defined by

[ = {1, if i=j,
y 0, otherwise.

For je L, let ¢’ denote the jth column of the zeta matrix, i.e., let

4 j(i) =y
If we order the rows and columns of Z compatibly with the partial ordering defined
by the lattice, it will be upper triangular with 1’s in its main diagonal. Hence it is

invertible, and its inverse M = Z ™' is an integral matrix of the same shape. This inverse
is a very important matrix, called the Mobius matrix of the lattice. Let

M =(u(i, j))ijes-

The function w is called the Mébius function of the lattice. From the discussion above,
wesee that u (i, i) = 1forall ie £, and w(i, j) =0foralli, je £ suchthat i Zj. Moreover,
the definition of M implies that for every pair of elements a = b of the lattice,

. 1, ifa=b,
a§2i§b wla,i)= {0, otherwise;
and
1, ifa=b
-’ b —_ 2 .’
agzi:§b w(ib) {O, otherwise.

Either one of these identities provides a recursive procedure to compute the M&bius
function. It is easy to see from this procedure that the value of the Mdbius function
w(i, j), where i =j, depends only on the internal structure of the interval [i, j]. Also
note the symmetry in these two identities. This implies that if w* denotes the Mdbius
function of the lattice turned upside down, then

w*(@, j) = p(J, i).
For je L, let u’ denote the jth column of the Mdbius matrix, i.e., let
Mj( i)= Mij-
We denote by y; the jth row of the Mdbius matrix, and by wu; ;) the restriction of u;
to the interval [, j], i.e., the vector defined by

p(i, k), if k=j,
0, otherwise.

#eiji(k) ={



CONES OF MATRICES AND SET-FUNCTIONS 185

The Mobius function of a lattice generalizes the Mdbius function in number
theory, and it can be used to formulate an inversion formula extending the Mobius
inversion in number theory. Let g€ R" be a function defined on the lattice. The zeta
matrix can be used to express its lower and upper summation function:

(Z7e)(i) =3 g(i),
j=i

and
(Zg)()= L g(j).
jzi
Given (say) f= Zg, we can recover g uniquely by

g(i) = (M) = ¥ uli, NIG).

The function g is called the upper Mébius inverse of f The lower Mdébius inverse is
defined analogously.

There is a further simple but important formula relating a function to its inverse.
Given a function feR", we associate with it the matrix W/ = (w,), where

wy =f(ivJ).
We also consider the diagonal matrix D’ with (D/); = f(i). Then it is not difficult to
prove the following identity (Lindstrom [15], Wilf [24]).

LEMMA 3.1. If g is the upper Mébius inverse of f, then W/ = ZD2ZT.

For more on Mébius functions, see Rota [21], Lovész [17, Chap. 2], or Stanley
[23, Chap. 3].

A function feR" will be called strongly decreasing if Mf=0. Since f=Z(Mf),
this is equivalent to saying that f is a nonnegative linear combination of the columns
of Z, i.e., of the vectors {;. So strongly decreasing functions form a convex cone
H =H(L), which is generated by the vectors ¢, je L. Also by definition, the polar
cone H* is generated by the rows of M, i.e., by the vectors u;.

Let us mention that the vector wu; ;; is also in H™ for every i =j. This is straightfor-
ward to check by calculating the inner product of wy; ;; with the generators {; of H. It
is easy to see that strongly decreasing functions are nonnegative, monotone decreasing,
and supermodular, i.e., they satisfy

S+ an))=f@)+f()).

Lemma 3.1 implies Corollary 3.2.

COROLLARY 3.2. A function f is strongly decreasing if and only if W’ is positive
semidefinite.

It follows, in particular, that f is strongly decreasing if and only if for every x € R*,

x™W/x=7Y f(ivj)=0.

XiX;

It is, in fact, worthwhile to mention the following identity, following immediately from
Lemma 3.1. Let f, xe R and let g = Mf and y = Zx. Then

xTWx=73 g(i)y(i)*

ie L
In particular, if f is strongly decreasing, then
1) xTWx = g(0)x(0)%
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Remark. Let L=2% and let f € R" such that f(#)) = 1. Then f is strongly decreasing
if and only if there exist random events A, (s € S) such that for every X < §,

I
Prob (se X AS) =f(X).

(If this is the case, (Mf)(X) is the probability of the atom [[,cx A, [[ses-x A.) In
particular, we obtain from (1) that for any A € RY with A(0)=1,

11 II _
= :
gyAxAy Prob (seXU v A“)“Pmb(ies A,).

This is a combinatorial version of the Selberg sieve in number theory (see [17, Chap.

2]). Inequality (1) can be viewed as Selberg’s sieve for general lattices; see Wilson [25].
The lattice structure also induces a “multiplication,” which leads to the semigroup

algebra of the semigroup (L, v). Given a, beR", we define the vector av beR" by

(avb)(k)= Y a(i)b(j).

ivj=k
In particular,
é; v eJ = e,-vj

(and the rest of the definition is obtained by distributivity). It is straightforward to see
that this operation is commutative, associative, and distributive with respect to the
vector addition, and has unit element e, (where 0 is the zero element of the lattice).
This semigroup algebra has a very simple structure: elementary calculations show that

(2) Z"(avb)(k)=(Z"a)(k) - (Z"b)(k),

and hence the semigroup algebra is isomorphic to the direct product of |L| copies of
R. 1t also follows from (2) that a vector a has an inverse in this algebra if and only if
(ZTa)(k) # 0 for all k.

Another identity which will be useful is the following:

3) (avb)Te=aTWeb.
Using this, we can express the fact that a vector c is strongly decreasing as follows:
(ava)Tez0 for every aeR-

In particular it follows that H* is generated by the vectors av a, a € R". Comparing
this with our previous characterization, it follows that the vectors u; must be of the
form av a. In fact, u; v u; = u;; more generally, the vectors uy; ;) are also idempotent.
Using (2) it is easy to see that the idempotents are exactly the vectors of the form
Yic1 Mi, Where I < L. Moreover, the v product of any two vectors w; is zero.

3.b. Optimization in lattices. Given a subset F< L, we denote by cone (F) the
convex cone spanned by the vectors ¢, i € F. Since these vectors are extreme rays of
H, and all extreme rays of H are linearly independent, it is, in principle, trivial to
describe F by linear inequalities. It is determined by the system

=0, ifigF,
4 T ? >
“) Hi x{go, ifieF
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But since cone (F) is generally not full-dimensional, it may have many other minimal
descriptions. For example, in the case when F is an order ideal (i.e., x€ F, y = x imply
y€ F), cone (F) could be described by

(5) x€ H, x(i)=0 forall igF.
Hence
(6) cone (F)*={aecR": (Z"a)(k)=0 for all ke F}.

Our main concern will be to describe the projection of cone (F) on the subspace
spanned by a few ‘“small”” elements in the lattice. Let I be the set of these “‘interesting”
lattice elements. We consider R’ as the subspace of R* spanned by the elements of I.
For any convex cone k < H, let K, denote the intersection of K with R' and let K /I
denote the projection of K onto R". Then (K*), < K* is the set of linear inequalities
valid for K involving only variables corresponding to elements of I Also, (K*), is
the polar of K/I with respect to the linear space R'.

For example, in the case when L=2° where S is an n-element set, we can take
I as the set of all singletons and . If we project cone (F) on this subspace, and
intersect the projection with the hyperplane x,=1, then we recover the polyhedron
usually associated with F (namely, the convex hull of incidence vectors of members
of F). Note that the projection itself is just the homogenization introduced in § 1. The
cone Q considered in § 1 is just H/ L

From these considerations we can infer the following theorem, due (in a slightly
different form) to Sherali and Adams [22].

THEOREM 3.3. If F<2° then conv {x*: Ac &} is the projection of the following
cone to singleton sets:

xy=0, uixz0 (je F), wfx=0 (je ).

The (n=1)x(n+1) matrices Y used in § 1 can be viewed in this framework in
two different ways. First, they can be viewed as portions of the vector x € R>’ determined
by the entries indexed by @, singletons, and pairs; the linear constraints on M(K)
used in § 1 are only the constraints we can derive in a natural way from the constraints
involving just the first n+1 variables.

Second, the matrices Y also occur as principal minors of the corresponding (huge)
matrix W7 So the positive semidefiniteness constraint for M,(K) is just a relaxation
of the condition that for x € H, W™ is positive semidefinite. (It is interesting to observe
that while by Corollary 3.2, the positive semidefiniteness of W~ is a polyhedral
condition, this relaxation of it is not.)

Let us discuss the case of the stable set polytope. We have a graph G=(V, E)
and we take S=V, L =25 Let F consist of the stable sets of G. Then cone (F) < R"
is defined by the constraints

xeH, x; =0 for every ije E.

We can relax the first constraint by stipulating that the upper left (n+1)x(n+1)
submatrix W§ of W is positive semidefinite. Then these submatrices form exactly the
cone Mqy as introduced in § 2. As we have seen, the projection of this cone to R’
intersected with the hyperplane x,=1, gives the body TH (G).

Note that the ‘“‘supermodularity” constraints x; —x; —x;+x,=0 are linear con-
straints valid for H, and involve only the variables indexed by sets with cardinality at
most 2, but they do not follow from the positive semidefiniteness of Wj. Using these
inequalities we obtain from x; =0 the constraint x; Z x; = x, for every edge ij€ E.
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Returmng to our general setting, we are going to interpret the operators N, N,
and N in this general setting, using the group algebra. In order to describe the projection
of cone (F) on R, we want to generate linear constraints valid for cone (F) such that
only the coefficients corresponding to elements of I are nonzero. To this end, we use
the semigroup algebra to combine constraints to yield new constraints for cone (F).
(This may temporarily yield constraints having some further nonzero coefficients, which
we can eliminate afterwards.)

We have already seen that a v a € cone (F)* for every a. From (2) and (6) we can
read off the following further rules:

(a) If a, becone (F)*, then av b econe (F)*.

(b) If acint (cone (F)*) and av b e cone (F)*, then becone (F)*.

In rule (b), we can replace the condition that a €int (cone (F)*) by the perhaps
more manageable condition that a=e,+c¢ with cecone(F)*. In fact, eye
int (cone (F)*) and hence for every c € cone (F)*, e,+ c € int (cone (F)*). Conversely,
if aeint (cone (F)*), then for a sufficiently small >0, a—te,< cone (F)*. Set ¢=
(a—e,)/t, then c+eyecone (F)* and (c+e,)vb=(avb)/tccone (F)*, and hence
becone (F)*.

If Z7a>0, then rule (b) follows from rule (a). In fact, let c(k) =1/(Z7a)(k), and
d=MTc. Then d is the inverse of a, that is, d va = ey, and (Z"d)(k) = c(k)>0 for
all k, so d € cone (F)*. Hence

b=(avb)vdecone (F)*,

by rule (a).

For two cones K, K< R" we denote by K, v K, the cone spanned by all vectors
u, v u,, where u; € K;. (The set of all vectors arising in this way is not convex in general )
This operation generalizes the construction of N(K,, K;), N.(K,, K), and N (K) in
the following sense.

PROPOSITION 3.4. Let L =25 I, the set consisting of (, and the singleton subsets of
S, and let K,, K,< H/ I be two convex cones. Then

(i) N(Ky, Ko)*=((K¥); v (K1)

(i) N.(K;, K)*=((K¥)v(K¥)+R'vR),.

Proof of (i). First, we assume that we ((K¥), v (K%),);. Then we can write
w=Y, a,vb, where a,e (K¥), and b, e (K¥),. Let xe N(K,, K,); then we can write
x= Ye, with Y =(y; € M(K,, K)). Define the vector ycR" by

Xk s ikaI,
0, else.

Then we have

wix=wTy=Y (a,vbh)y=Y al Yb,=0.
t t

This proves that we N(K;, K,)*.
Second, assume that we N(K,, K,)*. Then we can write

=3 azb:r+ > AieifiT+A:
P i=1

where a,€ K¥, b,e K¥, \;€R, and A is a skew symmetric matrix. Now it is easy to
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check that
w =Z (ar v bt),

and so we ((K¥),; v (K¥)),.

The proof of part (ii) is analogous. O

Next we show that the construction of N i is, in fact, a special case of the application
of rule (b).

LEMMA 3.5. Let L=2% I, the set consisting of @, and the singleton subsets of S,
and let K < H/ I, a convex cone. Then

N(K)*={aeR": Ibeint (K*), such that av be (K*); v (Q*),}.

The proof is analogous to that of Proposition 3.3, and is omitted.
We can use the formula in Proposition 3.4 to formulate a stronger version of the
repetition of the operator N. Note that

NZ(K)* =[[(K*);v(Q*);1;v (Q*); i s[(K*), v (Q*);v (Q"):11,
and similarly, if we denote (Q*); v - -+ v (Q¥*), (r factors) by Q,, then
N (K)*<[(K*);v Q1.

Now it is easy to see that the cone Q, is spanned by the vectors ug; ;1 where i< j and
|jl=r. For fixed r, this is a polynomial number of vectors. Let N"(K ) denote the polar
cone of [(K*); v Q,]; in the linear space R’. Then N"(K)< N"(K).

For the case of boolean algebras (and in a quite different form), the sequence
N"(K) of relaxations of K° was introduced by Sherali and Adams [22], who also
showed that N"(K)=K?°.

It is easy to see that if K is polynomial time separable, then so is N'(K) for
every fixed r: to check whether xe N"(K), it suffices to check whether there exist
vectors a'*/le (K*), forevery i and j withi < jand |n|<rsuchthata =Y, a"™v €
R’ and a"x <0. This is easily done in polynomial time using the e]hpsond method.
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